قالب های فارسی وردپرس 24

این وبلاگ جهت دسترسی آسان شما عزیزان به قالب های برتر وردپرس به صورت فارسی تدوین و راه اندازی شده است.

قالب های فارسی وردپرس 24

این وبلاگ جهت دسترسی آسان شما عزیزان به قالب های برتر وردپرس به صورت فارسی تدوین و راه اندازی شده است.

آیا فناوری تشخیص چهره نگران کننده است؟

استارتاپ Cainthus، شرکتی نوپا در حوزه‌ی فناوری تشخیص چهره محسوب می‌شود که به‌طور اختصاصی روی شناسایی گاوها در دامداری‌ها کار می‌کند. مدیر این استارتاپ یعنی دیوید هانتجلسه‌ای با نویسنده‌ی مقاله‌ی اصلی یعنی دیوید اون و یک دامدار ایرلندی به نام استفان لالر داشته است. لالر در دامداری خود در نزدیکی شهر دوبلین، روزانه شیر حدود ۳۰۰ گاو را می‌دوشد. کنترل رفتار گاوها و نحوه‌ و مقدار غذا خوردن آن‌ها، چالشی بود که لابر را به هانت رساند.

کاینتوس از دوربین‌های نظارتی درکنار بینایی ماشین و تصویربرداری پیش‌گویانه برای ردگیری حیوانات و رفتار آن‌ها استفاده می‌کند. لالر مانند بسیاری از دامداران بزرگ دیگر جهان، برای پیشرفت کسب‌وکار و افزایش تولید خود، انواع فناوری را به‌کار می‌گیرد. فرزندان این دامداران امروز در فکر شرکت‌های بزرگ همچون گوگل هستند اما خودشان، از فناوری‌ها در همان کسب‌وکارهای قدیمی استفاده می‌کنند. لالر تصمیم دارد برای خرید بعدی دامداری خود، یک روبات تهیه کند.

تشخیص چهره‌ی دام‌ها

برادر دیوید هانت یعنی راس، مدیر امور مالی استارتاپ است. آن‌ها ۳۶ سال سن دارند و در یک منطقه‌ی کوچک کشاورزی و دامداری در کانمارا در ساخل غربی ایرلند بزرگ شده‌اند. آن‌ها برای مدت‌ها تنها خانواده‌ی منطقه محسوب می‌شدند که کامپیوتر شخصی داشتند. این دو برادر پس از فارغ‌التحصیلی از دانشگاه شغل‌هایی را در حوزه‌های کسب‌وکار و مالی پیدا کردند.

برادران هانت ابتدا در کارخانه‌ی غلات پدر خود استخدام شدند و پس از مدتی مدیریت آن را به‌طور کامل بر عهده گرفتند. آن‌ها ابتدا نرم‌افزارهای شرکت را به‌روزرسانی کرده و به فضای ابری منتقل کردند. سپس برنامه‌ی معاملات آتی روی غلات را لغو کردند. درآمد شرکت در ۲.۵ سال پس از شروع فعالیت برادران هانت، تقریبا دوبرابر شد.

cainthus

دیوید و راس هانت پس از کسب موفقیت‌های اولیه در شرکت غلات، از کار در آنجا خسته شده و هر دو به انکوباتوری در سیلیکون‌ولی پیوستند. پیتر دیاماندیس و ری کورزویل، مدیران این انکوباتور بودند. درنهایت آن‌ها استارتاپ Cainthus را در سال ۲۰۱۶ تأسیس کردند. شریک دیگر آن‌ها رابین جانستون نام داشت که در نزدیکی مزارع تولید لبنیات در کانادا بزرگ شده بود و سابقه‌ای هم در حوزه‌ی بینایی کامپیوتری داشت.

نام شرکت Cainthus ترکیبی از کلمه‌ی Canthus به معنای نقطه‌ای در گوشه‌ی چشم و حرف i به‌عنوان نماد هوش مصنوعی (intelligence) است. راس اعتقاد دارد برای پیدا شدن بهتر در گوگل، باید اسم شرکت را اختراع کرد.

استارتاپ کاینثوس فناوری تشخیص چهره‌ی دام‌ها را توسعه داده است

دیوید و راس هانت اعتقاد دارند کشاورزی صنعتی است که کمترین تأثیر را از تحولات دیجیتالی گرفته است. آن‌ها می‌گوید هوش مصنوعی می‌تواند تأثیرات محیطی کشاورزی روی طبیعت را نیز کاهش دهد. تأثیرات مذکور با افزایش بهره‌وری و کاهش خطرات کشاورزی و دامداری ایجاد می‌شود.

آیدان کانولی یکی از سرمایه‌گذاران اولیه‌ی استارتاپ کاینثوس بود. او مدیر نوآوری در شرکت فناوری کشاوری Alltech است و اعتفاد دارد این استارتاپ، دنیا را تغییر خواهد داد. به‌عنوان مثال دامداران با گله‌های بزرگ، با استفاده از فناوری‌های استارتاپ کاینثوس، مانند دامداران با گله‌های کوچک‌تر، رفتار تک‌تک‌ گاوها را شناسایی و تحلیل می‌کنند.

cainthus

شرکت عظیم بین‌المللی Cargill فعال در صنعت جهانی غذا، از ابتدای سال جاری به جمع سرمایه‌گذاران و شرکای توسعه‌ای Cainthus پیوست. این شرکت در مدت یک هفته‌ی منتهی به نگارش مقاله، ۵ مزرعه‌ی دامداری دیگر را فناوری خود مجهز کرد. ۳ مزرعه‌ی جدید در کانادا و ۲ مزرعه در ایتالیا، مشتری‌های جدید آن‌ها بودند.

برادران هانت، چشم‌انداز خود را فراتر از کشاورزی و دامداری ترسیم کرده‌اند. حوزه‌ی تشخیص چهره و رفتار دام‌ها، به استارتاپ کاینثوس نسبت به رقبا برتری حدودی داده است. آن‌ها در مقابل شرکت‌های فعال در زمینه‌ی تشخیص چهره‌ی انسان‌ها، پیشرفت‌های آسان‌تری داشته‌اند؛ چرا که دام‌ها برخلاف انسان‌ها پوشش متفاوت روی صورت ندارند، در صورت کنترل تصویری شکایت نمی‌کنند و درنهایت، می‌توان رفتارهای آن‌ها را تغییر داد.

نکته‌ی مهم برای آینده‌ی استارتاپ کاینثوس، پیاده‌سازی آن برای تحلیل رفتارهای انسانی و کاربردهای جامع‌تر خواهد بود. به‌عنوان مثال می‌توان از نسخه‌های بعدی این فناوری برای کنترل ورزشکاران و اعلام خطر در مواقع گوناگون بیماری یا مصدومیت اشاره کرد. البته، قطعا ظرفیت به‌کارگیری فناوری برای کاربردهای نامناسب هم وجود دارد و باید مراقب آن بود. دیوید درباره‌ی این کاربردهای خطرناک می‌گوید: «اگر در ابتدا به‌اندازه‌ی کافی از این فناوری نترسید، یعنی مفهوم آن را به‌طور کامل درک نکرده‌اید.»

cainthus

روش کار و برنامه‌نویسی هوش مصنوعی

اون در ادامه‌ی مقاله داستانی را تعریف می‌کند که در آن، جزییات شناختن دوستی پس از ۲۰ سال دوری را شرح می‌دهد. او در داستان خود توضیح می‌دهد که چگونه پس از گذشت این همه سال، با دیدن دوستی در مسیر پیاده‌روی، حتی باوجود تغییرات متعدد در ظاهر، او را شناسایی کرده است.

نام‌گذاری روی چهره‌ها مانند فرمول‌سازی تئوری‌های توطئه، نیاز به شناسایی الگوها دارد. برخی افراد در این بخش ضعیف هستند و همسر، فرزند و حتی خودشان را هم به‌خوبی در عکس‌ها تشخیص نمی‌دهند. درمقابل، برخی افراد مهارت بالایی در تشخیص الگوها دارند.

نیروی پلیس اسکاتلندیارد در جریان شناسایی دو محکوم به قتل یک جاسوس روسی و دخترش، از افرادی با عنوان Super Recognizers استفاده کرد. این افراد به مهارت فوق طبیعی در تشخیص چهره و به‌یادسپاری خصوصیات متفاوت آن دارند. اغلب افراد، در دسته‌بندی میان گروه‌های فوق جای می‌گیرند.

نظارت تصویری

روند تحقیقات روی شناسایی افراد در تصاویر با استفاده از کامپیوتر، در دهه‌های ۶۰ و ۷۰ میلادی شروع شد. چالش اولیه آن بود که کامپیوتر بتواند وجود چهره را در یک عکس تشخیص دهد. چالش بعدی در سال‌های آینده ایجاد شد و آن، تشخیص چهره‌هایی بود که در حالت مناسبی ثبت نشده بودند. یک روش برای حل این چالش، سخت مدل‌های سه‌بعدی از سر انسان و نرمال‌سازی چهره‌ها با زوایای مختلف در عکس بود.

یکی از نقاط عطف تاریخ تشخیص چهره، عرضه‌ی واحدهای پردازش گرافیکی بود

یکی از نقاط عطف اصلی در تاریخ بینایی کامپیوتری، معرفی اولین پردازشگرهای گرافیکی یا همان GPUدر دو دهه قبل برای کامپیوترهای شخصی بود. البته واحدهای پردازش گرافیکی ابتدا برای گیمرها طراحی شدند؛ اما به‌قدری در انجام محاسبات تکراری در برخی حوزه‌های عالی بودند، که محققان هوش مصنوعی آن‌ها را به کار گرفتند.

اغلب سیستم‌های تشخیص چهره‌ی امروزی، از فناوری به‌نام شبکه‌ی عصبی استفاده می‌کنند. این شبکه‌ها کمی متفاوت از برنامه‌های سنتی برنامه‌نویسی شده‌اند. به‌عنوان مثال برای برنامه‌نویسی این شبکه‌ها، کدهایی برای شناسایی رنگ مو یا طول بینی نوشته نمی‌شد. به‌جای آن، شبکه‌ی عصبی با دیدن و مطالعه‌ی نمونه‌های فراوان و متضاد، آموزش می‌بیند و آن‌ها را در سطح پیکسلی با هم مقایسه می‌کند.

هوش انسانی، وظیفه‌ی تربیت و آموزش شبکه‌ی عصبی را بر عهده می‌گیرد. هر زمان که هوش مصنوعی دچار اشتباه شود،‌ پارامترهای گوناگون آن توسط متخصصان بهینه‌سازی می‌شود. البته در برخی سطح‌ها، الگوریتم‌ها مشخص می‌کنند که کدام شباهت و تفاوت قابل‌توجه است. به‌همین خاطر، شبکه‌های عصبی برخی اوقات به‌نام جعبه‌ی سیاه شناخته می‌شوند.

نظارت تصویری

اون در جریان نگارش مقاله با یکی از مدیران آزمایشگاه بینایی کامپیوتری دانشگاه ماساچوست در آمهرست دیدار کرده است. اریک لرند میلر یک دانشمند عاوم کامپیوتر بوده که سال‌ها روی بینایی کامپیوتری تحقیق کرده است. او اعتقاد دارد بسیاری از توسعه‌های پیش‌گام حوزه‌ی هوش مصنوعی و بینایی کامپیوتری در چند سال اخیر ایجاد شده‌اندو

میلر در توضیح ظرفیت‌های کنونی در حوزه‌ی بینایی بصری، در دسترس بودن پایگاه‌های داده‌ی عظیم از تصاویر کامپیوتری را مثال می‌زند. میلر در این‌باره می‌گوید:

تصور کنید که به سال ۱۹۱۸ رفته‌اید و یک سیستم قوی شبکه‌ی عصبی را به فردی معرفی می‌کنید. شما می‌گویید که این سیستم تنها با دیدن چند میلیون تصویر چهره، بینایی کامپیوتری را خواهد آموخت. قطعا اختراع شما در آن زمان خارق‌العاده محسوب می‌شود، اما این تعداد عکس از چهره‌ی افراد، تنها امروز و آن هم با دسترسی ساده به اینترنت قابل دسترسی است.

میلر یکی دیگر از قابلیت‌های مفید ایجاد شده در سال‌های اخیر را توانایی افزودن هویت به تصاویر در مراکز داده‌ی بزرگ می‌داند. چنین قابلیتی در سرویس‌هایی همچون Amazon Mechanical Turk قابل دسترسی است. در این سرویس، برخی کارهای تکراری که انسان‌ها آن را بهتر انجام می‌دهند، با هزینه‌های پایین انجام می‌شود. به‌عنوان مثال کارهایی همچون نوشتن متن از روی صدا یا تشخیص تصاویر مناسب برای شبکه‌های اجتماعی در چنین سرویس‌هایی توسط انسان‌ها و با هزینه‌های نسبتا پایین انجام می‌شود. استارتاپ کاینثوس نیز از سرویس‌های مشابه استفاده می‌کند.

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.